又爽又黄无遮挡高潮视频网站,久久精品人妻一区二区三区,粗壮挺进人妻水蜜桃成熟漫画,日韩人妻无码精品无码中文字幕

收藏萬通
登錄
免費注冊
移動網(wǎng)站
Hi,歡迎來到,萬通商務網(wǎng)
消息
管理中心
網(wǎng)站導航

內存

內存是計算機中重要的部件之一,它是與CPU進行溝通的橋梁。計算機中所有程序的運行都是在內存中進行的,因此內存的性能對計算機的影響非常大。內存(Memory)也被稱為內存儲器,其作用是用于暫時存放CPU中的運算數(shù)據(jù),以及與硬盤等外部存儲器交換的數(shù)據(jù)。只要計算機在運行中,CPU就會把需要運算的數(shù)據(jù)調到內存中進行運算,當運算完成后CPU再將結果傳送出來,內存的運行也決定了計算機的穩(wěn)定運行。 內存是由內存芯片、電路板、金手指等部分組成的。
內存
基本簡介
在計算機的組成結構中,有一個很重要的部分,就是存儲器。存儲器是用來存儲程序和數(shù)據(jù)的部件,對于計算機來說,有了存儲器,才有記憶功能,才能保證正常工作。存儲器的種類很多,按其用途可分為主存儲器和輔助存儲器,主存儲器又稱內存儲器(簡稱內存,港臺稱之為記憶體)。

內存又稱主存,是CPU能直接尋址的存儲空間,由半導體器件制成。內存的特點是存取速率快。內存是電腦中的主要部件,它是相對于外存而言的。我們平常使用的程序,如Windows操作系統(tǒng)、打字軟件、游戲軟件等,一般都是安裝在硬盤等外存上的,但僅此是不能使用其功能的,必須把它們調入內存中運行,才能真正使用其功能,我們平時輸入一段文字,或玩一個游戲,其實都是在內存中進行的。就好比在一個書房里,存放書籍的書架和書柜相當于電腦的外存,而我們工作的辦公桌就是內存。通常我們把要永久保存的、大量的數(shù)據(jù)存儲在外存上,而把一些臨時的或少量的數(shù)據(jù)和程序放在內存上,當然內存的好壞會直接影響電腦的運行速度。

結構原理
內存就是暫時存儲程序以及數(shù)據(jù)的地方,比如當我們在使用WPS處理文稿時,當你在鍵盤上敲入字符時,它就被存入內存中,當你選擇存盤時,內存中的數(shù)據(jù)才會被存入硬(磁)盤。在進一步理解它之前,還應認識一下它的物理概念。

內存一般采用半導體存儲單元,包括隨機存儲器(RAM),只讀存儲器(ROM),以及高速緩存(CACHE)。只不過因為RAM是其中最重要的存儲器。(synchronous)SDRAM 同步動態(tài)隨機存取存儲器:SDRAM為168腳,這是目前PENTIUM及以上機型使用的內存。SDRAM將CPU與RAM通過一個相同的時鐘鎖在一起,使CPU和RAM能夠共享一個時鐘周期,以相同的速度同步工作,每一個時鐘脈沖的上升沿便開始傳遞數(shù)據(jù),速度比EDO內存提高50%。DDR(DOUBLE DATA RATE)RAM :SDRAM的更新?lián)Q代產品,他允許在時鐘脈沖的上升沿和下降沿傳輸數(shù)據(jù),這樣不需要提高時鐘的頻率就能加倍提高SDRAM的速度。

只讀存儲器(ROM)

ROM表示只讀存儲器(Read Only Memory),在制造ROM的時候,信息(數(shù)據(jù)或程序)就被存入并永久保存。這些信息只能讀出,一般不能寫入,即使機器停電,這些數(shù)據(jù)也不會丟失。ROM一般用于存放計算機的基本程序和數(shù)據(jù),如BIOS ROM。其物理外形一般是雙列直插式(DIP)的集成塊。

隨機存儲器

隨機存儲器(Random Access Memory)表示既可以從中讀取數(shù)據(jù),也可以寫入數(shù)據(jù)。當機器電源關閉時,存于其中的數(shù)據(jù)就會丟失。我們通常購買或升級的內存條就是用作電腦的內存,內存條(SIMM)就是將RAM集成塊集中在一起的一小塊電路板,它插在計算機中的內存插槽上,以減少RAM集成塊占用的空間。目前市場上常見的內存條有1G/條,2G/條,4G/條等。

高速緩沖存儲器

Cache也是我們經常遇到的概念,也就是平?吹降囊患壘彺(L1 Cache)、二級緩存(L2 Cache)、三級緩存(L3 Cache)這些數(shù)據(jù),它位于CPU與內存之間,是一個讀寫速度比內存更快的存儲器。當CPU向內存中寫入或讀出數(shù)據(jù)時,這個數(shù)據(jù)也被存儲進高速緩沖存儲器中。當CPU再次需要這些數(shù)據(jù)時,CPU就從高速緩沖存儲器讀取數(shù)據(jù),而不是訪問較慢的內存,當然,如需要的數(shù)據(jù)在Cache中沒有,CPU會再去讀取內存中的數(shù)據(jù)。

物理存儲器

物理存儲器和存儲地址空間是兩個不同的概念。但是由于這兩者有十分密切的關系,而且兩者都用B、KB、MB、GB來度量其容量大小,因此容易產生認識上的混淆。初學者弄清這兩個不同的概念,有助于進一步認識內存儲器和用好內存儲器。

物理存儲器是指實際存在的具體存儲器芯片。如主板上裝插的內存條和裝載有系統(tǒng)的BIOS的ROM芯片,顯示卡上的顯示RAM芯片和裝載顯示BIOS的ROM芯片,以及各種適配卡上的RAM芯片和ROM芯片都是物理存儲器。

存儲地址空間是指對存儲器編碼(編碼地址)的范圍。所謂編碼就是對每一個物理存儲單元(一個字節(jié))分配一個號碼,通常叫作“編址”。分配一個號碼給一個存儲單元的目的是為了便于找到它,完成數(shù)據(jù)的讀寫,這就是所謂的“尋址”(所以,有人也把地址空間稱為尋址空間)。

地址空間的大小和物理存儲器的大小并不一定相等。舉個例子來說明這個問題:某層樓共有17個房間,其編號為801~817。這17個房間是物理的,而其地址空間采用了三位編碼,其范圍是800~899共100個地址,可見地址空間是大于實際房間數(shù)量的。

對于386以上檔次的微機,其地址總線為32位,因此地址空間可達2的32次方,即4GB。(雖然如此,但是我們一般使用的一些操作系統(tǒng)例如windows xp、卻最多只能識別或者使用3.25G的內存,64位的操作系統(tǒng)能識別并使用4G和4G以上的的內存,

好了,現(xiàn)在可以解釋為什么會產生諸如:常規(guī)內存、保留內存、上位內存、高端內存、擴充內存和擴展內存等不同內存類型。

奇/偶校驗

奇/偶校驗(ECC)是數(shù)據(jù)傳送時采用的一種校正數(shù)據(jù)錯誤的一種方式,分為奇校驗和偶校驗兩種。

如果是采用奇校驗,在傳送每一個字節(jié)的時候另外附加一位作為校驗位,當實際數(shù)據(jù)中“1”的個數(shù)為偶數(shù)的時候,這個校驗位就是“1”,否則這個校驗位就是“0”,這樣就可以保證傳送數(shù)據(jù)滿足奇校驗的要求。在接收方收到數(shù)據(jù)時,將按照奇校驗的要求檢測數(shù)據(jù)中“1”的個數(shù),如果是奇數(shù),表示傳送正確,否則表示傳送錯誤。

同理偶校驗的過程和奇校驗的過程一樣,只是檢測數(shù)據(jù)中“1”的個數(shù)為偶數(shù)。

CL延遲

CL反應時間是衡定內存的另一個標志。CL是CAS Latency的縮寫,指的是內存存取數(shù)據(jù)所需的延遲時間,簡單的說,就是內存接到CPU的指令后的反應速度。一般的參數(shù)值是2和3兩種。數(shù)字越小,代表反應所需的時間越短。在早期的PC133內存標準中,這個數(shù)值規(guī)定為3,而在Intel重新制訂的新規(guī)范中,強制要求CL的反應時間必須為2,這樣在一定程度上,對于內存廠商的芯片及PCB的組裝工藝要求相對較高,同時也保證了更優(yōu)秀的品質。因此在選購品牌內存時,這是一個不可不察的因素。

還有另的詮釋:內存延遲基本上可以解釋成是系統(tǒng)進入數(shù)據(jù)進行存取操作就序狀態(tài)前等待內存響應的時間。打個形象的比喻,就像你在餐館里用餐的過程一樣。你首先要點菜,然后就等待服務員給你上菜。同樣的道理,內存延遲時間設置的越短,電腦從內存中讀取數(shù)據(jù)的速度也就越快,進而電腦其他的性能也就越高。這條規(guī)則雙雙適用于基于英特爾以及AMD處理器的系統(tǒng)中。由于沒有比2-2-2-5更低的延遲,因此國際內存標準組織認為以現(xiàn)在的動態(tài)內存技術還無法實現(xiàn)0或者1的延遲。

通常情況下,我們用4個連著的阿拉伯數(shù)字來表示一個內存延遲,例如2-2-2-5。其中,第一個數(shù)字最為重要,它表示的是CAS Latency,也就是內存存取數(shù)據(jù)所需的延遲時間。第二個數(shù)字表示的是RAS-CAS延遲,接下來的兩個數(shù)字分別表示的是RAS預充電時間和Act-to-Precharge延遲。而第四個數(shù)字一般而言是它們中間最大的一個。

內存頻率

內存主頻和CPU主頻一樣,習慣上被用來表示內存的速度,它代表著該內存所能達到的最高工作頻率。內存主頻是以MHz(兆赫)為單位來計量的。內存主頻越高在一定程度上代表著內存所能達到的速度越快。內存主頻決定著該內存最高能在什么樣的頻率正常工作。目前較為主流的內存頻率是800MHz的DDR2內存,以及一些內存頻率更高的DDR3內存。

大家知道,計算機系統(tǒng)的時鐘速度是以頻率來衡量的。晶體振蕩器控制著時鐘速度,在石英晶片上加上電壓,其就以正弦波的形式震動起來,這一震動可以通過晶片的形變和大小記錄下來。晶體的震動以正弦調和變化的電流的形式表現(xiàn)出來,這一變化的電流就是時鐘信號。而內存本身并不具備晶體振蕩器,因此內存工作時的時鐘信號是由主板芯片組的北橋或直接由主板的時鐘發(fā)生器提供的,也就是說內存無法決定自身的工作頻率,其實際工作頻率是由主板來決定的。

DDR內存和DDR2內存的頻率可以用工作頻率和等效頻率兩種方式表示,工作頻率是內存顆粒實際的工作頻率,但是由于DDR內存可以在脈沖的上升和下降沿都傳輸數(shù)據(jù),因此傳輸數(shù)據(jù)的等效頻率是工作頻率的兩倍;而DDR2內存每個時鐘能夠以四倍于工作頻率的速度讀/寫數(shù)據(jù),因此傳輸數(shù)據(jù)的等效頻率是工作頻率的四倍。例如DDR 200/266/333/400的工作頻率分別是100/133/166/200MHz,而等效頻率分別是200/266/333/400MHz;DDR2 400/533/667/800的工作頻率分別是100/133/166/200MHz,而等效頻率分別是400/533/667/800MHz。

產品分類
這里需要明確的是,我們討論的不同內存的概念是建立在尋址空間上的。IBM推出的第一臺PC機采用的CPU是8088芯片,它只有20根地址線,也就是說,它的地址空間是1MB!

PC機的設計師將1MB中的低端640KB用作RAM,供DOS及應用程序使用,高端的384KB則保留給ROM、視頻適配卡等系統(tǒng)使用。從此,這個界限便被確定了下來并且沿用至今。低端的640KB就被稱為常規(guī)內存即PC機的基本RAM區(qū)。保留內存中的低128KB是顯示緩沖區(qū),高64KB是系統(tǒng)BIOS(基本輸入/輸出系統(tǒng))空間,其余192KB空間留用。從對應的物理存儲器來看,基本內存區(qū)只使用了512KB芯片,占用0000至7FFFF這512KB地址。顯示內存區(qū)雖有128KB空間,但對單色顯示器(MDA卡)只需4KB就足夠了,因此只安裝4KB的物理存儲器芯片,占用了B0000至B0FFF這4KB的空間,如果使用彩色顯示器(CGA卡)需要安裝16KB的物理存儲器,占用B8000至BBFFF這16KB的空間,可見實際使用的地址范圍都小于允許使用的地址空間。

在當時(1980年末至1981年初)這么“大”容量的內存對PC機使用者來說似乎已經足夠了,但是隨著程序的不斷增大,圖象和聲音的不斷豐富,以及能訪問更大內存空間的新型CPU相繼出現(xiàn),最初的PC機和MS-DOS設計的局限性變得越來越明顯。

擴充內存

到1984年,即286被普遍接受不久,人們越來越認識到640KB的限制已成為大型程序的障礙,這時,Intel和Lotus,這兩家硬、軟件的杰出代表,聯(lián)手制定了一個由硬件和軟件相結合的方案,此方法使所有PC機存取640KB以上RAM成為可能。而Microsoft剛推出Windows不久,對內存空間的要求也很高,因此它也及時加入了該行列。

在1985年初,Lotus、Intel和Microsoft三家共同定義了LIM-EMS,即擴充內存規(guī)范,通常稱EMS為擴充內存。當時,EMS需要一個安裝在I/O槽口的內存擴充卡和一個稱為EMS的擴充內存管理程序方可使用。但是I/O插槽的地址線只有24位(ISA總線),這對于386以上檔次的32位機是不能適應的。所以,現(xiàn)在已很少使用內存擴充卡。現(xiàn)在微機中的擴充內存通常是用軟件如DOS中的EMM386把擴展內存模擬或擴充內存來使用。所以,擴充內存和擴展內存的區(qū)別并不在于其物理存儲器的位置,而在于使用什么方法來讀寫它。下面將作進一步介紹。

前面已經說過擴充存儲器也可以由擴展存儲器模擬轉換而成。EMS的原理和XMS不同,它采用了頁幀方式。頁幀是在1MB空間中指定一塊64KB空間(通常在保留內存區(qū)內,但其物理存儲器來自擴展存儲器),分為4頁,每頁16KB。EMS存儲器也按16KB分頁,每次可交換4頁內容,以此方式可訪問全部EMS存儲器。符合EMS的驅動程序很多,常用的有EMM386.EXE、QEMM、TurboEMS、386MAX等。DOS和Windows中都提供了EMM386.EXE。

擴展內存

我們知道,286有24位地址線,它可尋址16MB的地址空間,而386有32位地址線,它可尋址高達4GB的地址空間,為了區(qū)別起見,我們把1MB以上的地址空間稱為擴展內存XMS(eXtend memory)。

在386以上檔次的微機中,有兩種存儲器工作方式,一種稱為實地址方式或實方式,另一種稱為保護方式。在實方式下,物理地址仍使用20位,所以最大尋址空間為1MB,以便與8086兼容。保護方式采用32位物理地址,尋址范圍可達4GB。DOS系統(tǒng)在實方式下工作,它管理的內存空間仍為1MB,因此它不能直接使用擴展存儲器。為此,Lotus、Intel、AST及Microsoft公司建立了MS-DOS下擴展內存的使用標準,即擴展內存規(guī)范XMS。我們常在Config.sys文件中看到的Himem.sys就是管理擴展內存的驅動程序。

擴展內存管理規(guī)范的出現(xiàn)遲于擴充內存管理規(guī)范。

高端內存

在實方式下,內存單元的地址可記為:

段地址:段內偏移

通常用十六進制寫為XXXX:XXXX。實際的物理地址由段地址左移4位再和段內偏移相加而成。若地址各位均為1時,即為FFFF:FFFF。其實際物理地址為:FFF0+FFFF=10FFEF,約為1088KB(少16字節(jié)),這已超過1MB范圍進入擴展內存了。這個進入擴展內存的區(qū)域約為64KB,是1MB以上空間的第一個64KB。我們把它稱為高端內存區(qū)HMA(High Memory Area)。HMA的物理存儲器是由擴展存儲器取得的。因此要使用HMA,必須要有物理的擴展存儲器存在。此外HMA的建立和使用還需要XMS驅動程序HIMEM.SYS的支持,因此只有裝入了HIMEM.SYS之后才能使用HMA。

上位內存

為了解釋上位內存的概念,我們還得回過頭看看保留內存區(qū)。保留內存區(qū)是指640KB~1024KB(共384KB)區(qū)域。這部分區(qū)域在PC誕生之初就明確是保留給系統(tǒng)使用的,用戶程序無法插足。但這部分空間并沒有充分使用,因此大家都想對剩余的部分打主意,分一塊地址空間(注意:是地址空間,而不是物理存儲器)來使用。于是就得到了又一塊內存區(qū)域UMB。

UMB(Upper Memory Blocks)稱為上位內存或上位內存塊。它是由擠占保留內存中剩余未用的空間而產生的,它的物理存儲器仍然取自物理的擴展存儲器,它的管理驅動程序是EMS驅動程序。

影子內存

對于細心的讀者,可能還會發(fā)現(xiàn)一個問題:即是對于裝有1MB或1MB以上物理存儲器的機器,其640KB~1024KB這部分物理存儲器如何使用的問題。由于這部分地址空間已分配為系統(tǒng)使用,所以不能再重復使用。為了利用這部分物理存儲器,在某些386系統(tǒng)中,提供了一個重定位功能,即把這部分物理存儲器的地址重定位為1024KB~1408KB。這樣,這部分物理存儲器就變成了擴展存儲器,當然可以使用了。但這種重定位功能在當今高檔機器中不再使用,而把這部分物理存儲器保留作為Shadow存儲器。Shadow存儲器可以占據(jù)的地址空間與對應的ROM是相同的。Shadow由RAM組成,其速度大大高于ROM。當把ROM中的內容(各種BIOS程序)裝入相同地址的Shadow RAM中,就可以從RAM中訪問BIOS,而不必再訪問ROM。這樣將大大提高系統(tǒng)性能。因此在設置CMOS參數(shù)時,應將相應的Shadow區(qū)設為允許使用(Enabled)。

經過上面分析,內存儲器的劃分可歸納如下:

基本內存占據(jù)0~640KB地址空間。

保留內存 占據(jù)640KB~1024KB地址空間。分配給顯示緩沖存儲器、各適配卡上的ROM和系統(tǒng)ROM BIOS,剩余空間可作上位內存UMB。UMB的物理存儲器取自物理擴展存儲器。此范圍的物理RAM可作為

Shadow RAM使用。

上位內存(UMB)利用保留內存中未分配使用的地址空間建立,其物理存儲器由物理擴展存儲器取得。UMB由EMS管理,其大小可由EMS驅動程序設定。

高端內存(HMA) 擴展內存中的第一個64KB區(qū)域(1024KB~1088KB)。由HIMEM.SYS建立和管理。

XMS內存符合XMS規(guī)范管理的擴展內存區(qū)。其驅動程序為HIMEM.SYS。

EMS內存 符合EMS規(guī)范管理的擴充內存區(qū)。其驅動程序為EMM386.EXE等。

內存:隨機存儲器(RAM),主要存儲正在運行的程序和要處理的數(shù)據(jù)。

頻率
內存主頻和CPU主頻一樣,習慣上被用來表示內存的速度,它代表著該內存所能達到的最高工作頻率。內存主頻是以MHz(兆赫)為單位來計量的。內存主頻越高在一定程度上代表著內存所能達到的速度越快。內

內存頻率測試圖

存主頻決定著該內存最高能在什么樣的頻率正常工作。目前較為主流的內存頻率是800MHz的DDR2內存,以及一些內存頻率更高的DDR3內存。

大家知道,計算機系統(tǒng)的時鐘速度是以頻率來衡量的。晶體振蕩器控制著時鐘速度,在石英晶片上加上電壓,其就以正弦波的形式震動起來,這一震動可以通過晶片的形變和大小記錄下來。晶體的震動以正弦調和變化的電流的形式表現(xiàn)出來,這一變化的電流就是時鐘信號。而內存本身并不具備晶體振蕩器,因此內存工作時的時鐘信號是由主板芯片組的北橋或直接由主板的時鐘發(fā)生器提供的,也就是說內存無法決定自身的工作頻率,其實際工作頻率是由主板來決定的。

DDR內存和DDR2內存的頻率可以用工作頻率和等效頻率兩種方式表示,工作頻率是內存顆粒實際的工作頻率,但是由于DDR內存可以在脈沖的上升和下降沿都傳輸數(shù)據(jù),因此傳輸數(shù)據(jù)的等效頻率是工作頻率的兩倍;而DDR2內存每個時鐘能夠以四倍于工作頻率的速度讀/寫數(shù)據(jù),因此傳輸數(shù)據(jù)的等效頻率是工作頻率的四倍。例如DDR 200/266/333/400的工作頻率分別是100/133/166/200MHz,而等效頻率分別是200/266/333/400MHz;DDR2 400/533/667/800的工作頻率分別是100/133/166/200MHz,而等效頻率分別是400/533/667/800MHz。

其他內存
SRAM

SRAM(Static RAM)意為靜態(tài)隨機存儲器。SRAM數(shù)據(jù)不需要通過不斷地刷新來保存,因此速度比DRAM(動態(tài)隨機存儲器)快得多。但是SRAM具有的缺點是:同容量相比DRAM需要非常多的晶體管,發(fā)熱量也非常大。因此SRAM難以成為大容量的主存儲器,通常只用在CPU、GPU中作為緩存,容量也只有幾十K至幾十M。

SRAM目前發(fā)展出的一個分支是eSRAM(Enhanced SRAM),為增強型SRAM,具備更大容量和更高運行速度。

RDRAM

RDRAM是由RAMBUS公司推出的內存。RDRAM內存條為16bit,但是相比同期的SDRAM具有更高的運行頻率,性能非常強。

然而它是一個非開放的技術,內存廠商需要向RAMBUS公司支付授權費。并且RAMBUS內存的另一大問題是不允許空通道的存在,必須成對使用,空閑的插槽必須使用終結器。因此,除了短壽的Intel i820和i850芯片組對其提供支持外,PC平臺沒有支持RAMBUS內存的芯片組。

可以說,它是一個優(yōu)秀的技術,但不是一個成功的商業(yè)產品。

XDRRAM

XDR內存是RDRAM的升級版。依舊由RAMBUS公司推出。XDR就是“eXtreme Data Rate”的縮寫。

XDR依舊存在RDRAM不能大面普及的那些不足之處。因此,XDR內存的應用依舊非常有限。比較常見的只有索尼的PS3游戲機。

Fe-RAM

鐵電存儲器是一種在斷電時不會丟失內容的非易失存儲器,具有高速、高密度、低功耗和抗輻射等優(yōu)點。由于數(shù)據(jù)是通過鐵元素的磁性進行存儲,因此,鐵電存儲器無需不斷刷新數(shù)據(jù)。其運行速度將會非常樂觀。而且它相比SRAM需要更少的晶體管。它被業(yè)界認為是SDRAM的最有可能的替代者。

MRAM

磁性存儲器。它和Fe-RAM具有相似性,依舊基于磁性物質來記錄數(shù)據(jù)。

OUM

相變存儲器。

奧弗辛斯基(Stanford Ovshinsky)在1968年發(fā)表了第一篇關于非晶體相變的論文,創(chuàng)立了非晶體半導體學。一年以后,他首次描述了基于相變理論的存儲器:材料由非晶體狀態(tài)變成晶體,再變回非晶體的過程中,其非晶體和晶體狀態(tài)呈現(xiàn)不同的反光特性和電阻特性,因此可以利用非晶態(tài)和晶態(tài)分別代表“0”和“1”來存儲數(shù)據(jù)。

產品發(fā)展
在計算機誕生初期并不存在內存條的概念,最早的內存是以磁芯的形式排列在線路上,每個磁芯與晶體管組成的一個雙穩(wěn)態(tài)電路作為一比特(BIT)的存儲器,每一比特都要有玉米粒大小,可以想象一間的機房只能裝下不超過百k字節(jié)左右的容量。后來才出線現(xiàn)了焊接在主板上集成內存芯片,以內存芯片的形式為計算機的運算提供直接支持。那時的內存芯片容量都特別小,最常見的莫過于256K×1bit、1M×4bit,雖然如此,但這相對于那時的運算任務來說卻已經綽綽有余了。

內存條的誕生

內存芯片的狀態(tài)一直沿用到286初期,鑒于它存在著無法拆卸更換的弊病,這對于計算機的發(fā)展造成了現(xiàn)實的阻礙。有鑒于此,內存條便應運而生了。將內存芯片焊接到事先設計好的印刷線路板上,而電腦主板上也改用內存插槽。這樣就把內存難以安裝和更換的問題徹底解決了。

在80286主板發(fā)布之前,內存并沒有被世人所重視,這個時候的內存是直接固化在主板上,而且容量只有64 ~256KB,對于當時PC所運行的工作程序來說,這種內存的性能以及容量足以滿足當時軟件程序的處理需要。不過隨著軟件程序和新一代80286硬件平臺的出現(xiàn),程序和硬件對內存性能提出了更高要求,為了提高速度并擴大容量,內存必須以獨立的封裝形式出現(xiàn),因而誕生了“內存條”概念。

在80286主板剛推出的時候,內存條采用了SIMM(Single In-lineMemory Modules,單邊接觸內存模組)接口,容量為30pin、256kb,必須是由8 片數(shù)據(jù)位和1 片校驗位組成1 個bank,正因如此,我們見到的30pin SIMM一般是四條一起使用。自1982年PC進入民用市場一直到現(xiàn)在,搭配80286處理器的30pin SIMM 內存是內存領域的開山鼻祖。

隨后,在1988 ~1990 年當中,PC 技術迎來另一個發(fā)展高峰,也就是386和486時代,此時CPU 已經向16bit 發(fā)展,所以30pin SIMM 內存再也無法滿足需求,其較低的內存帶寬已經成為急待解決的瓶頸,所以此時72pin SIMM 內存出現(xiàn)了,72pin SIMM支持32bit快速頁模式內存,內存帶寬得以大幅度提升。72pin SIMM內存單條容量一般為512KB ~2MB,而且僅要求兩條同時使用,由于其與30pin SIMM 內存無法兼容,因此這個時候PC業(yè)界毅然將30pin SIMM 內存淘汰出局了。

EDO DRAM(Extended Date Out RAM 外擴充數(shù)據(jù)模式存儲器)內存,這是1991 年到1995 年之間盛行的內存條,EDO DRAM同F(xiàn)PM DRAM(Fast Page Mode RAM 快速頁面模式存儲器)極其相似,它取消了擴展數(shù)據(jù)輸出內存與傳輸內存兩個存儲周期之間的時間間隔,在把數(shù)據(jù)發(fā)送給CPU的同時去訪問下一個頁面,故而速度要比普通DRAM快15~30%。工作電壓為一般為5V,帶寬32bit,速度在40ns以上,其主要應用在當時的486及早期的Pentium電腦上。

在1991 年到1995 年中,讓我們看到一個尷尬的情況,那就是這幾年內存技術發(fā)展比較緩慢,幾乎停滯不前,所以我們看到此時EDO DRAM有72 pin和168 pin并存的情況,事實上EDO 內存也屬于72pin SIMM 內存的范疇,不過它采用了全新的尋址方式。EDO 在成本和容量上有所突破,憑借著制作工藝的飛速發(fā)展,此時單條EDO 內存的容量已經達到4 ~16MB。由于Pentium及更高級別的CPU數(shù)據(jù)總線寬度都是64bit甚至更高,所以EDO DRAM與FPM DRAM都必須成對使用。

SDRAM時代

自Intel Celeron系列以及AMD K6處理器以及相關的主板芯片組推出后,EDO DRAM內存性能再也無法滿足需要了,內存技術必須徹底得到個革新才能滿足新一代CPU架構的需求,此時內存開始進入比較經典的SDRAM時代。

第一代SDRAM 內存為PC66 規(guī)范,但很快由于Intel 和AMD的頻率之爭將CPU外頻提升到了100MHz,所以PC66內存很快就被PC100內存取代,接著133MHz 外頻的PIII以及K7時代的來臨,PC133規(guī)范也以相同的方式進一步提升SDRAM 的整體性能,帶寬提高到1GB/sec以上。由于SDRAM 的帶寬為64bit,正好對應CPU 的64bit 數(shù)據(jù)總線寬度,因此它只需要一條內存便可工作,便捷性進一步提高。在性能方面,由于其輸入輸出信號保持與系統(tǒng)外頻同步,因此速度明顯超越EDO 內存。

不可否認的是,SDRAM 內存由早期的66MHz,發(fā)展后來的100MHz、133MHz,盡管沒能徹底解決內存帶寬的瓶頸問題,但此時CPU超頻已經成為DIY用戶永恒的話題,所以不少用戶將品牌好的PC100品牌內存超頻到133MHz使用以獲得CPU超頻成功,值得一提的是,為了方便一些超頻用戶需求,市場上出現(xiàn)了一些PC150、PC166規(guī)范的內存。

盡管SDRAM PC133內存的帶寬可提高帶寬到1064MB/S,加上Intel已經開始著手最新的Pentium 4計劃,所以SDRAM PC133內存不能滿足日后的發(fā)展需求,此時,Intel為了達到獨占市場的目的,與Rambus聯(lián)合在PC市場推廣Rambus DRAM內存(稱為RDRAM內存)。與SDRAM不同的是,其采用了新一代高速簡單內存架構,基于一種類RISC(Reduced Instruction Set Computing,精簡指令集計算機)理論,這個理論可以減少數(shù)據(jù)的復雜性,使得整個系統(tǒng)性能得到提高。

在AMD與Intel的競爭中,這個時候是屬于頻率競備時代,所以這個時候CPU的主頻在不斷提升,Intel為了蓋過AMD,推出高頻PentiumⅢ以及Pentium 4 處理器,因此Rambus DRAM內存是被Intel看著是未來自己的競爭殺手锏,Rambus DRAM內存以高時鐘頻率來簡化每個時鐘周期的數(shù)據(jù)量,因此內存帶寬相當出色,如PC 1066 1066 MHz 32 bits帶寬可達到4.2G Byte/sec,Rambus DRAM曾一度被認為是Pentium 4 的絕配。

盡管如此,Rambus RDRAM 內存生不逢時,后來依然要被更高速度的DDR“掠奪”其寶座地位,在當時,PC600、PC700的Rambus RDRAM 內存因出現(xiàn)Intel820 芯片組“失誤事件”、PC800 Rambus RDRAM因成本過高而讓Pentium 4平臺高高在上,無法獲得大眾用戶擁戴,種種問題讓Rambus RDRAM胎死腹中,Rambus曾希望具有更高頻率的PC1066 規(guī)范RDRAM來力挽狂瀾,但最終也是拜倒在DDR 內存面前。

DDR時代

DDR SDRAM(Double Data Rate SDRAM)簡稱DDR,也就是“雙倍速率SDRAM”的意思。DDR可以說是SDRAM的升級版本,DDR在時鐘信號上升沿與下降沿各傳輸一次數(shù)據(jù),這使得DDR的數(shù)據(jù)傳輸速度為傳統(tǒng)SDRAM的兩倍。由于僅多采用了下降緣信號,因此并不會造成能耗增加。至于定址與控制信號則與傳統(tǒng)SDRAM相同,僅在時鐘上升緣傳輸。

DDR 內存是作為一種在性能與成本之間折中的解決方案,其目的是迅速建立起牢固的市場空間,繼而一步步在頻率上高歌猛進,最終彌補內存帶寬上的不足。第一代DDR200 規(guī)范并沒有得到普及,第二代PC266 DDR SRAM(133MHz時鐘×2倍數(shù)據(jù)傳輸=266MHz帶寬)是由PC133 SDRAM內存所衍生出的,它將DDR 內存帶向第一個高潮,目前還有不少賽揚和AMD K7處理器都在采用DDR266規(guī)格的內存,其后來的DDR333內存也屬于一種過度,而DDR400內存成為目前的主流平臺選配,雙通道DDR400內存已經成為800FSB處理器搭配的基本標準,隨后的DDR533 規(guī)范則成為超頻用戶的選擇對象。

DDR2時代

隨著CPU 性能不斷提高,我們對內存性能的要求也逐步升級。不可否認,緊緊依高頻率提升帶寬的DDR遲早會力不從心,因此JEDEC 組織很早就開始醞釀DDR2 標準,加上LGA775接口的915/925以及最新的945等新平臺開始對DDR2內存的支持,所以DDR2內存將開始演義內存領域的今天。

DDR2 能夠在100MHz 的發(fā)信頻率基礎上提供每插腳最少400MB/s 的帶寬,而且其接口將運行于1.8V 電壓上,從而進一步降低發(fā)熱量,以便提高頻率。此外,DDR2 將融入CAS、OCD、ODT 等新性能指標和中斷指令,提升內存帶寬的利用率。從JEDEC組織者闡述的DDR2標準來看,針對PC等市場的DDR2內存將擁有400、533、667MHz等不同的時鐘頻率。高端的DDR2內存將擁有800、1000MHz兩種頻率。DDR-II內存將采用200-、220-、240-針腳的FBGA封裝形式。最初的DDR2內存將采用0.13微米的生產工藝,內存顆粒的電壓為1.8V,容量密度為512MB。

內存技術在2005年將會毫無懸念,SDRAM為代表的靜態(tài)內存在五年內不會普及。QBM與RDRAM內存也難以挽回頹勢,因此DDR與DDR2共存時代將是鐵定的事實。

PC-100的“接班人”除了PC一133以外,VCM(VirXual Channel Memory)也是很重要的一員。VCM即“虛擬通道存儲器”,這也是目前大多數(shù)較新的芯片組支持的一種內存標準,VCM內存主要根據(jù)由NEC公司開發(fā)的一種“緩存式DRAM”技術制造而成,它集成了“通道緩存”,由高速寄存器進行配置和控制。在實現(xiàn)高速數(shù)據(jù)傳輸?shù)耐瑫r,VCM還維持著對傳統(tǒng)SDRAM的高度兼容性,所以通常也把VCM內存稱為VCM SDRAM。VCM與SDRAM的差別在于不論是否經過CPU處理的數(shù)據(jù),都可先交于VCM進行處理,而普通的SDRAM就只能處理經CPU處理以后的數(shù)據(jù),所以VCM要比SDRAM處理數(shù)據(jù)的速度快20%以上。目前可以支持VCM SDRAM的芯片組很多,包括:Intel的815E、VIA的694X等。

3.RDRAM

Intel在推出:PC-100后,由于技術的發(fā)展,PC-100內存的800MB/s帶寬已經不能滿足需求,而PC-133的帶寬提高并不大(1064MB/s),同樣不能滿足日后的發(fā)展需求。Intel為了達到獨占市場的目的,與Rambus公司聯(lián)合在PC市場推廣Rambus DRAM(DirectRambus DRAM)。

Rambus DRAM是:Rambus公司最早提出的一種內存規(guī)格,采用了新一代高速簡單內存架構,基于一種RISC(Reduced Instruction Set Computing,精簡指令集計算機)理論,從而可以減少數(shù)據(jù)的復雜性,使得整個系統(tǒng)性能得到提高。Rambus使用400MHz的16bit總線,在一個時鐘周期內,可以在上升沿和下降沿的同時傳輸數(shù)據(jù),這樣它的實際速度就為400MHz×2=800MHz,理論帶寬為(16bit×2×400MHz/8)1.6GB/s,相當于PC-100的兩倍。另外,Rambus也可以儲存9bit字節(jié),額外的一比特是屬于保留比特,可能以后會作為:ECC(ErroI·Checking and Correction,錯誤檢查修正)校驗位。Rambus的時鐘可以高達400MHz,而且僅使用了30條線連接內存控制器和RIMM(Rambus In-line MemoryModules,Rambus內嵌式內存模塊),減少銅線的長度和數(shù)量就可以降低數(shù)據(jù)傳輸中的電磁干擾,從而快速地提高內存的工作頻率。不過在高頻率下,其發(fā)出的熱量肯定會增加,因此第一款Rambus內存甚至需要自帶散熱風扇。

DDR3時代

DDR3相比起DDR2有更低的工作電壓,從DDR2的1.8V降落到1.5V,性能更好更為省電;DDR2的4bit預讀升級為8bit預讀。DDR3目前最高能夠達到2000Mhz的速度,盡管目前最為快速的DDR2內存速度已經提升到800Mhz/1066Mhz的速度,但是DDR3內存模組仍會從1066Mhz起跳。

一、DDR3在DDR2基礎上采用的新型設計:

1、8bit預取設計,而DDR2為4bit預取,這樣DRAM內核的頻率只有接口頻率的1/8,DDR3-800的核心工作頻率只有100MHz。

2、采用點對點的拓樸架構,以減輕地址/命令與控制總線的負擔。

3、采用100nm以下的生產工藝,將工作電壓從1.8V降至1.5V,增加異步重置(Reset)與ZQ校準功能。部分廠商已經推出1.35V的低壓版DDR3內存。

即將到來的DDR4時代

內存廠商預計在2012年,DDR4時代將開啟,起步頻率降至1.2V,而頻率提升至2133MHz,次年進一步將電壓降至1.0V,頻率則實現(xiàn)2667MHz。

新一代的DDR4內存將會擁有兩種規(guī)格。根據(jù)多位半導體業(yè)界相關人員的介紹,DDR4內存將會是Single-endedSignaling( 傳統(tǒng)SE信號)方式DifferentialSignaling( 差分信號技術)方式并存。其中AMD公司的PhilHester先生也對此表示了確認。預計這兩個標準將會推出不同的芯片產品,因此在DDR4內存時代我們將會看到兩個互不兼容的內存產品。

相關問題
延遲問題

從上表可以看出,在同等核心頻率下,DDR2的實際工作頻率是DDR的兩倍。這得益于DDR2內存擁有兩倍于標準DDR內存的4BIT預讀取能力。換句話說,雖然DDR2和DDR一樣,都采用了在時鐘的上升延和下降延同時進行數(shù)據(jù)傳輸?shù)幕痉绞?但DDR2擁有兩倍于DDR的預讀取系統(tǒng)命令數(shù)據(jù)的能力。也就是說,在同樣100MHz的工作頻率下,DDR的實際頻率為200MHz,而DDR2則可以達到400MHz。

這樣也就出現(xiàn)了另一個問題:在同等工作頻率的DDR和DDR2內存中,后者的內存延時要慢于前者。舉例來說,DDR 200和DDR2-400具有相同的延遲,而后者具有高一倍的帶寬。實際上,DDR2-400和DDR 400具有相同的帶寬,它們都是3.2GB/s,但是DDR400的核心工作頻率是200MHz,而DDR2-400的核心工作頻率是100MHz,也就是說DDR2-400的延遲要高于DDR400。

封裝和發(fā)熱量

DDR2內存技術最大的突破點其實不在于用戶們所認為的兩倍于DDR的傳輸能力,而是在采用更低發(fā)熱量、更低功耗的情況下,DDR2可以獲得更快的頻率提升,突破標準DDR的400MHZ限制。

DDR內存通常采用TSOP芯片封裝形式,這種封裝形式可以很好的工作在200MHz上,當頻率更高時,它過長的管腳就會產生很高的阻抗和寄生電容,這會影響它的穩(wěn)定性和頻率提升的難度。這也就是DDR的核心頻率很難突破275MHZ的原因。而DDR2內存均采用FBGA封裝形式。不同于目前廣泛應用的TSOP封裝形式,FBGA封裝提供了更好的電氣性能與散熱性,為DDR2內存的穩(wěn)定工作與未來頻率的發(fā)展提供了良好的保障。

DDR2內存采用1.8V電壓,相對于DDR標準的2.5V,降低了不少,從而提供了明顯的更小的功耗與更小的發(fā)熱量,這一點的變化是意義重大的。

DDR2采用的新技術

除了以上所說的區(qū)別外,DDR2還引入了三項新的技術,它們是OCD、ODT和Post CAS。

OCD(Off-Chip Driver):也就是所謂的離線驅動調整,DDR II通過OCD可以提高信號的完整性。DDR II通過調整上拉(pull-up)/下拉(pull-down)的電阻值使兩者電壓相等。使用OCD通過減少DQ-DQS的傾斜來提高信號的完整性;通過控制電壓來提高信號品質。

ODT:ODT是內建核心的終結電阻器。我們知道使用DDR SDRAM的主板上面為了防止數(shù)據(jù)線終端反射信號需要大量的終結電阻。它大大增加了主板的制造成本。實際上,不同的內存模組對終結電路的要求是不一樣的,終結電阻的大小決定了數(shù)據(jù)線的信號比和反射率,終結電阻小則數(shù)據(jù)線信號反射低但是信噪比也較低;終結電阻高,則數(shù)據(jù)線的信噪比高,但是信號反射也會增加。因此主板上的終結電阻并不能非常好的匹配內存模組,還會在一定程度上影響信號品質。DDR2可以根據(jù)自己的特點內建合適的終結電阻,這樣可以保證最佳的信號波形。使用DDR2不但可以降低主板成本,還得到了最佳的信號品質,這是DDR不能比擬的。

Post CAS:它是為了提高DDR II內存的利用效率而設定的。在Post CAS操作中,CAS信號(讀寫/命令)能夠被插到RAS信號后面的一個時鐘周期,CAS命令可以在附加延遲(Additive Latency)后面保持有效。原來的tRCD(RAS到CAS和延遲)被AL(Additive Latency)所取代,AL可以在0,1,2,3,4中進行設置。由于CAS信號放在了RAS信號后面一個時鐘周期,因此ACT和CAS信號永遠也不會產生碰撞沖突。

總的來說,DDR2采用了諸多的新技術,改善了DDR的諸多不足,雖然它目前有成本高、延遲慢能諸多不足,但相信隨著技術的不斷提高和完善,這些問題終將得到解決。

DDR3與DDR2幾個主要的不同之處

1、突發(fā)長度(Burst Length,BL)

由于DDR3的預取為8bit,所以突發(fā)傳輸周期(Burst Length,BL)也固定為8,而對于DDR2和早期的DDR架構系統(tǒng),BL=4也是常用的,DDR3為此增加了一個4bit Burst Chop(突發(fā)突變)模式,即由一個BL=4的讀取操作加上一個BL=4的寫入操作來合成一個BL=8的數(shù)據(jù)突發(fā)傳輸,屆時可通過A12地址線來控制這一突發(fā)模式。而且需要指出的是,任何突發(fā)中斷操作都將在DDR3內存中予以禁止,且不予支持,取而代之的是更靈活的突發(fā)傳輸控制(如4bit順序突發(fā))。

2、尋址時序(Timing)

就像DDR2從DDR轉變而來后延遲周期數(shù)增加一樣,DDR3的CL周期也將比DDR2有所提高。DDR2的CL范圍一般在2~5之間,而DDR3則在5~11之間,且附加延遲(AL)的設計也有所變化。DDR2時AL的范圍是0~4,而DDR3時AL有三種選項,分別是0、CL-1和CL-2。另外,DDR3還新增加了一個時序參數(shù)——寫入延遲(CWD),這一參數(shù)將根據(jù)具體的工作頻率而定。

3、DDR3新增的重置(Reset)功能

重置是DDR3新增的一項重要功能,并為此專門準備了一個引腳。DRAM業(yè)界很早以前就要求增加這一功能,如今終于在DDR3上實現(xiàn)了。這一引腳將使DDR3的初始化處理變得簡單。當Reset命令有效時,DDR3內存將停止所有操作,并切換至最少量活動狀態(tài),以節(jié)約電力。

在Reset期間,DDR3內存將關閉內在的大部分功能,所有數(shù)據(jù)接收與發(fā)送器都將關閉,所有內部的程序裝置將復位,DLL(延遲鎖相環(huán)路)與時鐘電路將停止工作,而且不理睬數(shù)據(jù)總線上的任何動靜。這樣一來,將使DDR3達到最節(jié)省電力的目的。

4、DDR3新增ZQ校準功能

ZQ也是一個新增的腳,在這個引腳上接有一個240歐姆的低公差參考電阻。這個引腳通過一個命令集,通過片上校準引擎(On-Die Calibration Engine,ODCE)來自動校驗數(shù)據(jù)輸出驅動器導通電阻與ODT的終結電阻值。當系統(tǒng)發(fā)出這一指令后,將用相應的時鐘周期(在加電與初始化之后用512個時鐘周期,在退出自刷新操作后用256個時鐘周期、在其他情況下用64個時鐘周期)對導通電阻和ODT電阻進行重新校準。

5、參考電壓分成兩個

在DDR3系統(tǒng)中,對于內存系統(tǒng)工作非常重要的參考電壓信號VREF將分為兩個信號,即為命令與地址信號服務的VREFCA和為數(shù)據(jù)總線服務的VREFDQ,這將有效地提高系統(tǒng)數(shù)據(jù)總線的信噪等級。

6、點對點連接(Point-to-Point,P2P)

這是為了提高系統(tǒng)性能而進行的重要改動,也是DDR3與DDR2的一個關鍵區(qū)別。在DDR3系統(tǒng)中,一個內存控制器只與一個內存通道打交道,而且這個內存通道只能有一個插槽,因此,內存控制器與DDR3內存模組之間是點對點(P2P)的關系(單物理Bank的模組),或者是點對雙點(Point-to-two-Point,P22P)的關系(雙物理Bank的模組),從而大大地減輕了地址/命令/控制與數(shù)據(jù)總線的負載。而在內存模組方面,與DDR2的類別相類似,也有標準DIMM(臺式PC)、SO-DIMM/Micro-DIMM(筆記本電腦)、FB-DIMM2(服務器)之分,其中第二代FB-DIMM將采用規(guī)格更高的AMB2(高級內存緩沖器)。

面向64位構架的DDR3顯然在頻率和速度上擁有更多的優(yōu)勢,此外,由于DDR3所采用的根據(jù)溫度自動自刷新、局部自刷新等其它一些功能,在功耗方面DDR3也要出色得多,因此,它可能首先受到移動設備的歡迎,就像最先迎接DDR2內存的不是臺式機而是服務器一樣。在CPU外頻提升最迅速的PC臺式機領域,DDR3未來也是一片光明。目前Intel預計在明年第二季所推出的新芯片-熊湖(Bear Lake),其將支持DDR3規(guī)格,而AMD也預計同時在K9平臺上支持DDR2及DDR3兩種規(guī)格! 

內存異步工作模式包含多種意義,在廣義上凡是內存工作頻率與CPU的外頻不一致時都可以稱為內存異步工作模式。首先,最早的內存異步工作模式出現(xiàn)在早期的主板芯片組中,可以使內存工作在比CPU外頻高33MHz或者低33MHz的模式下(注意只是簡單相差33MHz),從而可以提高系統(tǒng)內存性能或者使老內存繼續(xù)發(fā)揮余熱。其次,在正常的工作模式(CPU不超頻)下,目前不少主板芯片組也支持內存異步工作模式,例如Intel 910GL芯片組,僅僅只支持533MHz FSB即133MHz的CPU外頻,但卻可以搭配工作頻率為133MHz的DDR 266、工作頻率為166MHz的DDR 333和工作頻率為200MHz的DDR 400正常工作(注意此時其CPU外頻133MHz與DDR 400的工作頻率200MHz已經相差66MHz了),只不過搭配不同的內存其性能有差異罷了。再次,在CPU超頻的情況下,為了不使內存拖CPU超頻能力的后腿,此時可以調低內存的工作頻率以便于超頻,例如AMD的Socket 939接口的Opteron 144非常容易超頻,不少產品的外頻都可以輕松超上300MHz,而此如果在內存同步的工作模式下,此時內存的等效頻率將高達DDR 600,這顯然是不可能的,為了順利超上300MHz外頻,我們可以在超頻前在主板BIOS中把內存設置為DDR 333或DDR 266,在超上300MHz外頻之后,前者也不過才DDR 500(某些極品內存可以達到),而后者更是只有DDR 400(完全是正常的標準頻率),由此可見,正確設置內存異步模式有助于超頻成功。

目前的主板芯片組幾乎都支持內存異步,英特爾公司從810系列到目前較新的875系列都支持,而威盛公司則從693芯片組以后全部都提供了此功能。

相關資料
內存容量

內存容量同硬盤、軟盤等存儲器容量單位都是相同的,它們的基本單位都是字節(jié)(B),并且:

1024B=1KB=1024字節(jié)=2^10字節(jié)(^代表次方)

1024KB=1MB=1048576字節(jié)=2^20字節(jié)

1024MB=1GB=1073741824字節(jié)=2^30字節(jié)

1024GB=1TB=1099511627776字節(jié)=2^40字節(jié)

1024TB=1PB=1125899906842624字節(jié)=2^50字節(jié)

1024PB=1EB=115 292150 4606846976字節(jié)=2^60字節(jié)

1024EB=1ZB=1180591620717411303424字節(jié)=2^70字節(jié)

1024ZB=1YB=1208925819614629174706176字節(jié)=2^80字節(jié)

內存大小

內存的種類和運行頻率會對性能有一定影響,不過相比之下,容量的影響更加大。在其他配置相同的條件下內存越大機器性能也就越高。 內存的價格小幅走低,2011年前后,電腦內存的配置越來越大,一般都在1G以上,更有2G、4G、6G內存的電腦。

內存作為電腦中重要的配件之一,內存容量的大小確實能夠直接關系到整個系統(tǒng)的性能。因此,內存容量已經越來越受到消費者的關注。尤其在目前WIN7操作系統(tǒng)已經開始取代XP之時,對于最新的WIN7操作系統(tǒng),多數(shù)消費者都認為大容量能讓其內存評分得到提升。

內存的工作原理。從功能上理解,我們可以將內存看作是內存控制器與CPU之間的橋梁,內存也就相當于“倉庫”。顯然,內存的容量決定“倉庫”的大小,而內存的速度決定“橋梁”的寬窄,兩者缺一不可,這也就是我們常常說道的“內存容量”與“內存速度”。

內存帶寬的計算方法并不復雜,大家可以遵循如下的計算公式:帶寬=總線寬度×總線頻率×一個時鐘周期內交換的數(shù)據(jù)包個數(shù)。很明顯,在這些乘數(shù)因子中,每個都會對最終的內存帶寬產生極大的影響。在PCMark Vantage測試中,可以看到2GB和4GB DDR3-1600內存性能比較接近,其中2GB內存僅在啟動一些辦公軟件時候比較落后,畢竟少了一半容量所以運行起來比較吃力。而在3DmarkVantage游戲性能測試中,我們可以看出在Win7系統(tǒng)下,2GB和4GB內存的性能區(qū)別不是很大,成績非常接近。同時,在WIN7環(huán)境下,2GB內存與4GB內存差別很小,有些情況下甚至沒有差別,這時如果想提高內存性能,光想著升級容量意義并不是很大。

內存寬帶

基本簡介

從功能上理解,我們可以將內存看作是內存控制器(一般位于北橋芯片中)與CPU之間的橋梁或與倉庫。顯然,內存的容量決定“倉庫”的大小,而內存的帶寬決定“橋梁”的寬窄,兩者缺一不可,這也就是我們常常說道的“內存容量”與“內存速度”。除了內存容量與內存速度,延時周期也是決定其性能的關鍵。

當CPU需要內存中的數(shù)據(jù)時,它會發(fā)出一個由內存控制器所執(zhí)行的要求,內存控制器接著將要求發(fā)送至內存,并在接收數(shù)據(jù)時向CPU報告整個周期(從CPU到內存控制器,內存再回到CPU)所需的時間。毫無疑問,縮短整個周期也是提高內存速度的關鍵,這就好比在橋梁上工作的警察,其指揮疏通能力也是決定通暢度的因素之一。更快速的內存技術對整體性能表現(xiàn)有重大的貢獻,但是提高內存帶寬只是解決方案的一部分,數(shù)據(jù)在CPU以及內存間傳送所花的時間通常比處理器執(zhí)行功能所花的時間更長,為此緩沖區(qū)被廣泛應用。

其實,所謂的緩沖器就是CPU中的一級緩存與二級緩存,它們是內存這座“大橋梁”與CPU之間的“小橋梁”。事實上,一級緩存與二級緩存采用的是SRAM,我們也可以將其寬泛地理解為“內存帶寬”,不過現(xiàn)在似乎更多地被解釋為“前端總線”,所以我們也只是簡單的提一下。事先預告一下,“前端總線”與“內存帶寬”之間有著密切的聯(lián)系,我們將會在后面的測試中有更加深刻的認識。

產品重要性

內存帶寬為何會如此重要呢?在回答這一問題之前,我們先來簡單看一看系統(tǒng)工作的過程;旧袭擟PU接收到指令后,它會最先向CPU中的一級緩存(L1Cache)去尋找相關的數(shù)據(jù),雖然一級緩存是與CPU同頻運行的,但是由于容量較小,所以不可能每次都命中。這時CPU會繼續(xù)向下一級的二級緩存(L2Cache)尋找,同樣的道理,當所需要的數(shù)據(jù)在二級緩存中也沒有的話,會繼續(xù)轉向L3Cache(如果有的話,如K6-2+和K6-3)、內存和硬盤。

由于目前系統(tǒng)處理的數(shù)據(jù)量都是相當巨大的,因此幾乎每一步操作都得經過內存,這也是整個系統(tǒng)中工作最為頻繁的部件。如此一來,內存的性能就在一定程度上決定了這個系統(tǒng)的表現(xiàn),這點在多媒體設計軟件和3D游戲中表現(xiàn)得更為明顯。3D顯卡的內存帶寬(或許稱為顯存帶寬更為合適)的重要性也是不言而喻的,甚至其作用比系統(tǒng)的內存帶寬更為明顯。

大家知道,顯示卡在進行像素渲染時,都需要從顯存的不同緩沖區(qū)中讀寫數(shù)據(jù)。這些緩沖區(qū)中有的放置描述像素ARGB(阿爾法通道,紅,綠,藍)元素的顏色數(shù)據(jù),有的放置像素Z值(用來描述像素的深度或者說可見性的數(shù)據(jù))。顯然,一旦產生Z軸數(shù)據(jù),顯存的負擔會立即陡然提升,在加上各種材質貼圖、深度復雜性渲染、3D特效.

提高內存帶寬

內存帶寬的計算方法并不復雜,大家可以遵循如下的計算公式:帶寬=總線寬度×總線頻率×一個時鐘周期內交換的數(shù)據(jù)包個數(shù)。很明顯,在這些乘數(shù)因子中,每個都會對最終的內存帶寬產生極大的影響。然而,如今在頻率上已經沒有太大文章可作,畢竟這受到制作工藝的限制,不可能在短時間內成倍提高。而總線寬度和數(shù)據(jù)包個數(shù)就大不相同了,簡單的改變會令內存帶寬突飛猛進。

DDR技術就使我們感受到提高數(shù)據(jù)包個數(shù)的好處,它令內存帶寬瘋狂地提升一倍。當然,提高數(shù)據(jù)包個數(shù)的方法不僅僅局限于在內存上做文章,通過多個內存控制器并行工作同樣可以起到效果,這也就是如今熱門的雙通道DDR芯片組(如nForce2、I875/865等)。事實上,雙通道DDR內存控制器并不能算是新發(fā)明,因為早在RAMBUS時代,RDRAM就已經使用了類似技術,只不過當時RDRAM的總線寬度只有16Bit,無法與DDR的64Bit相提并論。

內存技術發(fā)展到如今這一階段,四通道內存控制器的出現(xiàn)也只是時間問題,VIA的QBM技術以及SiS支持四通道RDRAM的芯片組,這些都是未來的發(fā)展方向。至于顯卡方面,我們對其顯存帶寬更加敏感,這甚至也是很多廠商用來區(qū)分高低端產品的重要方面。同樣是使用DDR顯存的產品,128Bit寬度的產品會表現(xiàn)出遠遠勝過64Bit寬度的產品。當然提高顯存頻率也是一種解決方案,不過其效果并不明顯,而且會大幅度提高成本。值得注意的是,目前部分高端顯卡甚至動用了DDRII技術,不過至少在目前看來,這項技術還為時過早。

識別內存帶寬

對于內存而言,辨別內存帶寬是一件相當簡單的事情,因為SDRAM、DDR、RDRAM這三種內存在外觀上有著很大的差別,大家通過下面這副圖就能清楚地認識到。唯一需要我們去辨認的便是不同頻率的DDR內存。目前主流DDR內存分為DDR266、DDR333以及DDR400,其中后三位數(shù)字代表工作頻率。通過內存條上的標識,自然可以很方便地識別出其規(guī)格。

相對而言,顯卡上顯存帶寬的識別就要困難一些。在這里,我們應該抓住“顯存位寬”和“顯存頻率”兩個重要的技術指標。顯存位寬的計算方法是:單塊顯存顆粒位寬×顯存顆粒總數(shù),而顯存頻率則是由"1000/顯存顆粒納秒數(shù)"來決定。一般來說,我們可以從顯存顆粒上一串編號的最后2兩位看出其納秒數(shù),從中也就得知其顯存頻率。至于單塊顯存顆粒位寬,我們只能在網(wǎng)上查詢。HY、三星、EtronTech(鈺創(chuàng))等都提供專用的顯存編號查詢網(wǎng)站,相當方便。

如三星的顯存就可以到如下的地址下載,只要輸入相應的顯存顆粒編號即可。此外,使用RivaTuner也可以檢測顯卡上顯存的總位寬,大家打開RivaTuner在MAIN菜單即可看到。

選購方法

產品做工要精良

對于選擇內存來說,最重要的是穩(wěn)定性和性能,而內存的做工水平直接會影響到性能、穩(wěn)定以及超頻。

內存顆粒的好壞直接影響到內存的性能,可以說也是內存最重要的核心元件。所以大家在購買時,盡量選擇大廠生產出來的內存顆粒,一般常見的內存顆粒廠商有三星、現(xiàn)代、鎂光、南亞、茂矽等,它們都是經過完整的生產工序,因此在品質上都更有保障。而采用這些頂級大廠內存顆粒的內存條品質性能,必然會比其他雜牌內存顆粒的產品要高出許多。

內存PCB電路板的作用是連接內存芯片引腳與主板信號線,因此其做工好壞直接關系著系統(tǒng)穩(wěn)定性。目前主流內存PCB電路板層數(shù)一般是6層,這類電路板具有良好的電氣性能,可以有效屏蔽信號干擾。而更優(yōu)秀的高規(guī)格內存往往配備了8層PCB電路板,以起到更好的效能。

SPD隱藏信息

SPD信息可以說非常重要,它能夠直觀反映出內存的性能及體制。它里面存放著內存可以穩(wěn)定工作的指標信息以及產品的生產,廠家等信息。不過,由于每個廠商都能對SPD進行隨意修改,因此很多雜牌內存廠商會將SPD參數(shù)進行修改或者直接COPY名牌產品的SPD,但是一旦上機用軟件檢測就會原形畢露。

因此,大家在購買內存以后,回去用常用的Everest、CPU-Z等軟件一查即可明白。不過需要注意的是,對于大品牌內存來說SPD參數(shù)是非常重要的,但是對于雜牌內存來說,SPD的信息并不值得完全相信。

假冒或返修產品

目前有一些內存往往使用了不同品牌、型號的內存顆粒,大家一眼就可以看出區(qū)別。同時有些無孔不入的JS也會采用打磨內存顆粒的作假手段,然后再加印上新的編號參數(shù)。不過仔細觀察,就會發(fā)現(xiàn)打磨過后的芯片比較暗淡無光,有起毛的感覺,而且加印上的字跡模糊不清晰。這些一般都是假冒的內存產品,需要注意。

此外,大家還要觀察PCB電路板是否整潔,有無毛刺等等,金手指是否很明顯有經過插拔所留下的痕跡,如果有,則很有可能是返修內存產品(當然也不排除有廠家出廠前經過測試,不過比較少數(shù))。需要提醒大家的是,返修和假冒內存無論多么便宜都不值得購買,因為其安全隱患十分嚴重。

增加內存方法

解決方法一:

內存對臺式機整體性能的影響眾所周知,而筆記本電腦其內存多數(shù)采用共享方式同時負擔內存、顯存等存儲功能,所以相比之下筆記本電腦內存對于整機性能的影響更為顯著。
內存
內存

隨著軟件容量的不斷增大,版本的不斷升級,同時也對系統(tǒng)性能提出了更高的要求,過去筆記本電腦主流的1G內存配置越來越不能滿足我們的需求,尤其是進行圖像處理時甚至會出現(xiàn)內存不足的情況。所以,升級內存顯得很有必要。

解決方法二:

1、體積

由于筆記本電腦整合性高,設計精密,所以在相同容量下盡量選擇體積相對較小的內存條,這樣減少了在插入內存時與其它配件碰撞的機會,而且體積較小的內存能很好地避免配件之間的電磁干擾,也更有利于散熱,從而保證了筆記本電腦的穩(wěn)定運行。

2、容量

出于追求體積小巧的考慮,筆記本電腦的內存插槽是有限的,大部分筆記本電腦都有兩個144線的DIMM插槽,升級的空間比較有限,為了避免今后內存容量成為影響性能的瓶頸,建議盡量選擇單條容量較大的內存,另外芯片數(shù)目較少的內存在工作狀態(tài)下的發(fā)熱量也較低。

解決方法三:

現(xiàn)在內存已經發(fā)展了很多代,主流的內存都是DD3了,如果你要加內存,那么需要的和你電腦上一樣的型號,要不然是無法匹配。

故障修復
一、開機無顯示

由于內存條原因出現(xiàn)此類故障一般是因為內存條與主板內存插槽接觸不良造成,只要用橡皮擦來回擦試其金手指部位即可解決問題(不要用酒精等清洗),還有就是內存損壞或主板內存槽有問題也會造成此類故障。

由于內存條原因造成開機無顯示故障,主機揚聲器一般都會長時間蜂鳴(針對Award Bios而言)

二、windows系統(tǒng)運行不穩(wěn)定,經常產生非法錯誤

出現(xiàn)此類故障一般是由于內存芯片質量不良或軟件原因引起,如若確定是內存條原因只有更換一途。

三、windows注冊表經常無故損壞,提示要求用戶恢復

此類故障一般都是因為內存條質量不佳引起,很難予以修復,唯有更換一途。

四、windows經常自動進入安全模式

此類故障一般是由于主板與內存條不兼容或內存條質量不佳引起,常見于PC133內存用于某些不支持PC133內存條的主板上,可以嘗試在CMOS設置內降低內存讀取速度看能否解決問題,如若不行,那就只有更換內存條了。

五、隨機性死機

此類故障一般是由于采用了幾種不同芯片的內存條,由于各內存條速度不同產生一個時間差從而導致死機,對此可以在CMOS設置內降低內存速度予以解決,否則,唯有使用同型號內存。還有一種可能就是內存條與主板不兼容,此類現(xiàn)象一般少見,另外也有可能是內存條與主板接觸不良引起電腦隨機性死機,此類現(xiàn)象倒是比較常見。

六、內存加大后系統(tǒng)資源反而降低

此類現(xiàn)象一般是由于主板與內存不兼容引起,常見于PC133內存條用于某些不支持PC133內存條的主板上,即使系統(tǒng)重裝也不能解決問題。

七、windows啟動時,在載入高端內存文件himem.sys時系統(tǒng)提示某些地址有問題

此問題一般是由于內存條的某些芯片損壞造成,解決方法可參見下面內存維修一法。

八、運行某些軟件時經常出現(xiàn)內存不足的提示

此現(xiàn)象一般是由于系統(tǒng)盤剩余空間不足造成,可以刪除一些無用文件,多留一些空間即可,一般保持在300M左右為宜。

九、從硬盤引導安裝windows進行到檢測磁盤空間時,系統(tǒng)提示內存不足

此類故障一般是由于用戶在config.sys文件中加入了emm386.exe文件,只要將其屏蔽掉即可解決問題。

十、安裝windows進行到系統(tǒng)配置時產生一個非法錯誤

此類故障一般是由于內存條損壞造成,可以按內存維修一法來解決,如若不行,那就只有更換內存條了。

十一、啟動windows時系統(tǒng)多次自動重新啟動

此類故障一般是由于內存條或電源質量有問題造成,當然,系統(tǒng)重新啟動還有可能是CPU散熱不良或其他人為故障造成,對此,唯有用排除法一步一步排除。

十二、內存維修一法

出現(xiàn)上面幾種故障后,倘若內存損壞或芯片質量不行,如條件不允許可以用烙鐵將內存一邊的各芯片卸下,看能否解決問題,如若不行再換卸另一邊的芯片,直到成功為止(如此焊工只怕要維修手機的人方可達到)。當然,有條件用示波器檢測那就事半功倍了),采用此法后,因為已將內存的一邊芯片卸下,所以內存只有一半可用,例如,64M還有32M可用,為此,對于小容量內存就沒有維修的必要了。

電腦內存六大故障

故障一:

內存條與主板插槽接觸不良,故障表現(xiàn)為:打開主機電源后屏幕顯示“Error :Unable to ControlA20 Line ”出錯信息后死機。

解決方法:仔細檢查內存條是否與插槽保持良好接觸或更換內存條。
電腦內存
電腦內存

故障二:

開機自檢,在DOS狀態(tài)下運行應用程序,占用的內存地址沖突導致內存分配錯誤,屏幕出現(xiàn)“Memory A11ocationError”提示。

解決方法:Confis.sys文件中沒有用Himem.sys 、Emm386.exe等內存治理文件設置Xms.ems 內存或者設置不當,使得系統(tǒng)僅能使用640KB 基本內存,運行的程序稍大便出現(xiàn)“Out of Memory ”(內存不足)的提示,無法操縱。這些現(xiàn)象均屬軟故障,編寫好系統(tǒng)配置文件Config.sys后重新啟動xp系統(tǒng)即可。

故障三:

Windows 系統(tǒng)中運行的應用程序非法訪問內存、內存中駐留了太多應用程序、活動窗口打開太多、應用程序相關配置文件不公道等原因均能導致屏幕出現(xiàn)很多有關內存出錯的信息。

解決方法:此類故障必須采用清除內存駐留程序、減少活動窗口、調整配置文件(INI ),重裝系統(tǒng)和應用程序等辦法來處理。

故障四:

Windows 系統(tǒng)中運行DOS狀態(tài)下的應用軟件(如DOS 下運行的游戲軟件等)時,因軟件之間分配、占用內存沖突出現(xiàn)黑屏、花屏、死機現(xiàn)象。

解決辦法:退出Windows 系統(tǒng),進進DOS 狀態(tài),再運行應用程序。

故障五:

程序有病毒,病毒程序駐留內存、CMOS參數(shù)中內存值的大小被病毒修改,將導致內存值與內存條實際內存大小不符、內存工作異常等現(xiàn)象。

解決辦法:采用殺毒軟件消除病毒;CMOS中參數(shù)被病毒修改,先將CMOS短接放電,重新啟動機器,進進CMOS后仔細檢查各項硬件參數(shù),正確設置有關內存的參數(shù)值。

故障六:

電腦升級進行內存擴充,選擇了與主板不兼容的內存條。

解決方法:先升級主板的BIOS,看看是否能解決,否則只能更換內存條。

  • 金士頓u盤數(shù)據(jù)修復/天津內存卡數(shù)據(jù)恢復

    產品規(guī)格:
    產品數(shù)量:
    100
    經營模式:
    服務型
    執(zhí)照認證:
    已認證
    最近更新:
    2024/12/31 17:06:58
    經營品牌:
    天偉
        近水樓臺先得月,天津數(shù)據(jù)恢復到天偉。天偉數(shù)據(jù)恢復中心致力于為客戶提供:電腦文件恢復 機械硬盤數(shù)據(jù)恢復 專業(yè)的串口硬盤數(shù)據(jù)恢復中心 希捷硬盤恢復修復 
    ¥0元/塊

    所在地:天津天津

    天津市天偉悅龍計算機維修服務中心

  • w25q128bvfig 內存芯片

    產品規(guī)格:
    原廠標準
    產品數(shù)量:
    2154
    經營模式:
    貿易型
    執(zhí)照認證:
    未認證
    最近更新:
    2018/7/16 16:43:18
    經營品牌:
    星際金華
    深圳市星際金華實業(yè)有限公司現(xiàn)貨供應w25q128bvfig內存芯片。! 星際金華熱銷w25q128bvfig內存芯片,100%原裝正品,海量庫存,價格低廉,質量保證。!
    ¥0.5元/只

    所在地:廣東深圳

    深圳市星際金華實業(yè)有限公司

  • 1037f板貼內存主板 1037u高清主板 1037u廣告

    產品規(guī)格:
    產品數(shù)量:
    1000
    經營模式:
    生產型
    執(zhí)照認證:
    未認證
    最近更新:
    2017/1/10 14:14:19
    經營品牌:
    ELSKY
    1037f、i3hgp是一款低功耗、高速度、板貼內存的主板;趇ntelceleron最新平臺cpu1037u。主要應用于金融、零售、一體機_、廣_告_機_、工控機_等領域。 主要特性 ★低功耗處理器1037u,i
    ¥420元/片

    所在地:廣東深圳

    深圳市研盛芯控電子技術有限公司業(yè)務部1

關于我們 | 聯(lián)系我們 | 合作代理 | 客服中心 | 幫助信息 | 誠聘英才 | 網(wǎng)站地圖 | 加入收藏夾 | 意見反饋 | 快遞查詢 | 漢字轉換 | RSS訂閱
©2013-2015h665.cn 版權所有 粵ICP備14027189號-5 湘公網(wǎng)安備 43052302000106號

互聯(lián)網(wǎng)違法和不良信息24小時舉報電話:13437489760 admin@h665.cn